f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
F(X) → G(X)
ACTIVATE(n__f(X)) → F(X)
G(s(X)) → G(X)
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
F(X) → G(X)
ACTIVATE(n__f(X)) → F(X)
G(s(X)) → G(X)
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
F(X) → G(X)
G(s(X)) → G(X)
ACTIVATE(n__f(X)) → F(X)
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
G(s(X)) → G(X)
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(s(X)) → G(X)
s1 > G1
G1: multiset
s1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
g1 > 0 > s1
SEL1: multiset
f1: multiset
s1: multiset
0: multiset
g1: multiset
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X